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This article presents a new analytical model of a gear pair with time varying mesh sti!ness,
viscous damping and sliding friction parameters. Unlike previous models, the excitation
consists of three separate terms, namely the unloaded transmission error, time-invariant
external torque and the periodically varying sliding friction force. A Coulomb friction model
is considered using "rst a quasi-static mean transmitted load that is represented by the
Meissner equation. Then, a truly dynamic force between gear teeth is described that leads to
a triangular function, and after appropriate substitutions, this assumes the form of the Bessel
equation of the one-third order. For the damped Meissner equation, the forced vibration
response is found with the application of Floquet theory. Exact integrals are calculated for
the state transition matrix in a piecewise manner, instead of using the Fourier series
expansion, thus eliminating the mode truncation errors. From the state transition matrix,
unstable zones are identi"ed and the actual forced response of the system is found in terms of
dynamic transmission error for these zones. With the aid of an example, the signi"cance of
sliding friction on system response and stability is examined. Finally, key advantages and the
need for analytical methods are demonstrated for such systems.
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1. INTRODUCTION

The physical mechanism of gear meshing demonstrates a wide spectrum of dynamic
characteristics, including signi"cant time-varying mesh sti!ness and damping changes
during one tooth meshing cycle. Additionally, the instantaneous number of teeth in
contact, governs the load distribution and sliding resistance acting on the individual
teeth. Consequently, the geared system responds to a combined excitation of trans-
mission error due to pro"le deviations, periodic variations in system parameters and
periodically varying sliding friction. Such complexities have led prior researchers [1}14] to
adopt numerical approaches or approximate analyses, with many simplifying assumptions.
For example, many researchers have developed the dynamic models of gears [1] by
neglecting friction or assuming constant mesh parameters. Although sliding force
amplitudes are small compared to the mean transmitted loads, the large oscillatory
component of friction force is potentially a major excitation source [2]. Iida et al. [3]
estimated the response in terms of shaft de#ections in the friction direction. Borner and
Houser [2] extended this formulation to helical gears, based on the instantaneous load
distribution that is computed from boundary-element-type contact analysis. The e!ect of
friction on torsional dynamics was studied by Radzimovsky and Mirare" [4] for
a four-square test rig.
0022-460X/01/230525#21 $35.00/0 ( 2001 Academic Press
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It is well known that the contact characteristics of gear teeth dictate the spatial variations
in meshing sti!ness and viscous damping parameters [5}7]. Iwatsubo et al. [8] investigated
the coupling between lateral and torsional vibrations using a six-degree-of-freedom model
with time-varying mesh properties. Kahraman and Singh [9] studied the interactions
between variable mesh sti!ness and clearance non-linearities for single- and three-
degree-of-freedom systems using digital simulation techniques. Conversely, semi-analytical
methods were applied by Padmanabhan and Singh [6] to analyze the non-linearities for the
gear systems. Oh et al. [10] considered both time and angular domain formulation using the
Lagrangian principle and showed that the ensuing non-linear dynamic response was
consistent with the energy conservation principle. However, in all of these studies, friction
between gear teeth and its cyclic nature were either ignored or incorporated as an
equivalent viscous damping term [11]. Recently, Hochmann [12] has studied the e!ect of
periodic friction on torsional dynamics using a Fourier series expansion, with the
assumption of constant mesh sti!ness and damping. In the literature, no reference could
however be found for a full analytical model of a gear pair, that includes interactions among
time-varying system parameters, sliding friction and transmission error excitation.

Due to large #uctuations in mesh compliance, stability emerges as an important criterion in
gear systems. Some stability characteristics of gear systems were studied by Iwatsubo
et al. [8] and Kumar et al. [13] using state-space methods. In an earlier work, Benton and
Seireg [14] showed the di!erences in superharmonic response arising due to rectangular and
sinusoidal mesh sti!ness variations. Blankenship and Singh [11] analyzed the parametric
resonances in mechanical oscillators as introduced by factors like sti!ness variations and
angular modulation e!ects, from the standpoint of understanding side-band phenomenon.
Overall, none of these studies speci"cally considered sliding resistance in the system, and
hence the in#uence of friction on dynamic characteristics remains ill-understood.

In this article, a new analytical model will be developed that incorporates sliding
resistance in the dynamic equations for a spur gear pair. By de"ning all the parameters in
a piecewise manner, the system is translated into a linear time-varying (LTV) form. With the
application of Floquet theory, both homogenous and forced responses will be derived for
a combined excitation of static transmission error, parametric variation of mesh sti!ness
and periodic frictional torque. Analytical solutions are then sought to study the in#uence of
friction on the dynamic behavior of gears. The stability characteristics of gears will be
investigated using the concept of state transition matrix. An example is chosen to illustrate
some of the concepts.

2. PROBLEM FORMULATION

2.1. REPRESENTATION OF GEAR EXCITATIONS

The generic gear pair is modelled as a purely torsional vibration system (Figure 1). Mesh
sti!ness k(t) is a result of Hertzian deformation as well as the cantilever bending of the teeth.
Non-conjugacy of the tooth pro"les manifests as a displacement excitation at the mesh,
commonly referred to as the unloaded static transmission error, e(t). Sliding on the gear
tooth surface causes a frictional force F

f
along the o!-line of action direction, which is

designated as the g-axis. As the gears roll, the tooth interface point moves along the contact
line or the line of action (m direction). This linearly varying value of m

p
(t) and mg(t) result in

a time-varying torque ¹
f

about the two gear axes, which will also depend upon
the coe$cient of friction (k) and the normal load. Additionally, external torques ¹

p
and

¹g act on the pinion and the gear respectively. The gears rotate with mean angular speeds of



Figure 1. Dynamic model of a gear pair with sliding friction.
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X
p
and Xg , whereas h

p
and hg represent the vibratory angular displacements from the mean

position.

2.2. PARAMETRIC VARIATIONS WITHIN ONE MESH PERIOD

For most practical designs of spur gears, the pro"le contact ratio C varies between 1)0
and 2)0. This implies that two teeth are in contact for (C!1) fraction of the total time, and
a single tooth is transmitting the torque during the rest of the mesh cycle. In Figure 2, the
beginning of the mesh cycle at t"0 is de"ned to be coincident with the initiation of contact
for the second tooth. As the gears roll, the "rst tooth leaves contact and there is a step
reduction in the meshing sti!ness k(t) of the system. The load is assumed to be distributed
equally amongst all the teeth in contact, hence its value will be doubled for the second tooth.
Till this instant t

a
, the sliding velocity <

s
on the two pairs of teeth is opposite in direction,

and consequently, so is the friction force F
f
. The second critical point occurs at t

b
when the

zone of contact passes through the pitch point, and the direction of the sliding velocity for
tooth 2 reverses [Figure 2(c)]. Finally, the third gear tooth comes into engagement at t

c
and

this constitutes one gear mesh cycle. Simpli"ed variation of system parameters and the
major excitations are sketched in Figure 2. These parameters can be represented in
a mathematical form by equations (1}6).

(1) Load distribution N(t) of Figure 2:

N
1
(t)"N

2
(t)"N/2, 0)t(t

a
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N
1
(t)"0; N

2
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,
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here, N"¹
p
/R

p
.



Figure 2. Simpli"ed periodic variations as functions of gear mesh position. Key: **, "rst tooth; - - -, second
tooth. (a) Load distribution function N(t); (b) mesh sti!ness k(t); (c) coe$cient of friction k; (d) friction torque ¹

f
.
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(2) Mesh sti!ness k(t) of Figure 2:

k (t)"k
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(1#b (t)),

where

b (t)"(k
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/k
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!1), 0)t(t
a
,

(2a}c)
b(t)"(k
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/k
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!1), t

a
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.

The time-averaged mean sti!ness k
mean

is given by

k
mean

"Sk(t)T
t
"

1

t
c
P

t
c

0

k(t) dt"k
max

(C!1)#k
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(!C#2). (3)

(3) Coe$cient of friction k of Figure 2:
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In equation (4), k
0

is the coe$cient of friction of the gear surface material.
(4) Frictional torque ¹

f
of Figure 2:
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where parameters c and b are speci"c to the gear pair design and depend on the
tribological conditions and meshing kinematics.

(5) Sliding velocity <
s
:

<
s,i
"a

p,i
R

p
X

p
!ag,i

RgXg . (6)

In equation (6), a represents the gear roll angle, which is de"ned between the tangent to
tooth pro"le at the point of contact and a radial line to the imaginary point when the tooth
and base circle intersect. Due to the involute form of pro"le, a varies linearly with time for
a constant angular speed X. From this, the sliding velocity is found as the di!erence between
the surface tangential velocities at the point of contact for each tooth in mesh.

2.3. OBJECTIVES AND SCOPE

The main objectives of this paper are to (1) develop an analytical model for the system in
Figure 1 that incorporates periodic sliding resistance due to friction, (2) apply Floquet
theory to determine closed form solutions for a combined excitation of static transmission
error, parametric variation of mesh sti!ness and frictional torque, (3) investigate the
in#uence of friction and other time-varying parameters (Figure 2) on the torsional dynamics
of a spur gear pair, and (4) study the stability characteristics of the system with reference to
relevant design parameters.

Essential steps of our methodology are as follows. All the system parameters and
excitations are "rst de"ned in three piecewise continuous regimes within a tooth mesh cycle,
as shown in Figure 2, and the corresponding equations of motion are written for an LTV
system. Second, the Coulomb friction is considered to act on a quasi-static mean
transmitted load, such that friction only acts as an external excitation. This system can be
represented in the form of a damped Meissner equation. Third, Floquet theory is applied to
"nd analytical solutions for both homogenous and forced vibration response in terms of
dynamic transmission error, for a combined excitation of static transmission error,
parametric variation of mesh sti!ness and frictional torque. Fourth, the Coulomb friction
model is applied on the dynamic mesh load between gear teeth, which results in triangular
coe$cients in the equation of motion. With appropriate substitutions, this is reduced to the
form of a Bessel equation of the one-third order. Since closed form expressions for integrals
of Bessel function do not exist, a semi-analytical approach is applied for predicting the
response for this case. Fifth, for both the cases, the state transition matrix is computed and
from its eigenvalues, dynamic stability conditions are studied. Finally, using the example of
a practical gear pair, the in#uence of friction and other parameters on dynamic behavior
and stability is examined.

In our formulation, several assumptions have been made for the purpose of clarity. The
gear pair is represented by a single-degree-of-freedom torsional system, while #exural
vibrations and their coupling with torsional motion are ignored. Subsequent analysis
however shows that the solutions can be easily extended to higher degree systems in a future
study. Both mesh sti!ness and damping are assumed to follow a rectangular waveform,
entailing a step change at the tooth transition points. Sliding velocity at the gear and pinion
teeth surface, which is required to "nd the direction of friction force, is determined only from
gear mesh kinematics. Hence it does not accommodate the instantaneous angular velocity
changes due to the vibratory motion. Furthermore, no distinction is made between spatial
and temporal variations of parameters and all parameters are therefore assumed to be
functions of time only. These two assumptions allow for the whole study to be carried out as
an LTV analysis explicitly in the time domain.
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3. ANALYTICAL MODEL WITH SLIDING FRICTION

3.1. GOVERNING EQUATIONS

For the dynamic system of Figure 1, the equations of torsional motion can be written
for the pinion and the gear (subscripts p and g respectively). Refer to Appendix A and
Figure 1 for the identi"cation of symbols.
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Here i, j are the indices of the particular teeth in contact. Recognizing that this is
a semi-de"nite system, de"ne the dynamic transmission error (DTE) as d(t)"R

p
h
p
(t)!

Rghg(t), such that equations (7 and 8) reduce to a single equation:
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3.2. ALTERNATE FRICTION FORMULATIONS

In our study, two kinds of variations in sliding forces are considered. Formulation A is
based on the quasi-static, time-averaged transmitted torque and formulation B is based on
the dynamic mesh forces. Thus, the expressions for friction force for the two cases can be
written as follows:

Formulation A: F
f
(t)"k

i
N(t). (10)

Formulation B: F
f
(t)"k

i
(k(t)d(t)#c(t)dQ (t)). (11)

In addition, there are two other signi"cant excitations, the mean load that may in#uence
the parametric excitation and a displacement function due to pro"le variations on the tooth
surface, the latter often known as the unloaded static transmission error e(t). An inspection
of the e(t) curves shows that these are best expressed by a Fourier series expansion, where
typically up to eight harmonics of meshing frequency provide an adequate representation.
In this manner, the gear dynamics problem is de"ned in three distinct piecewise linear
regions as shown in Figure 2. Relevant equations of motion for formulation A are given as
follows, where a

m
is the total roll angle spanned in one mesh cycle:
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In these equations, the following equivalent symbols have been used:
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Equations (12}14) may be represented in a general form as follows, where m
e
, c

e
and

k
e
are equivalent dynamic parameters:
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Similarly for formulation B, we get
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Equation (17) can be written in a similar manner as equation (16). Conversely, for
equations (18) and (19), the friction moment arm m

pi
(t) is linearly changing with time, as

shown in equation (20a, b). Here, a
0
is the roll angle at the start of the mesh cycle, referred to

as the highest point of single tooth contact.
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Consequently, the general formulation for equations (18 and 19) is

m
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c
t) dQ #k

e
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k
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e
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It may be noted that the homogenous part of equation (16) is independent of friction, thus
e!ectively reducing the problem into a general second order equation, where sliding friction
only acts as an external excitation. On the other hand, friction terms appear on the left-hand
side of equation (21). Consequently, k becomes a system parameter and it would then lead
to dynamic interactions between the sliding characteristics and the periodic system
parameters.

4. STATE TRANSITION MATRIX AND FLOQUET THEORY

4.1. STATE TRANSITION MATRIX REPRESENTATION

The above two sets of equations (12}14) and (17}19) can be represented in the state space
form as follows. In equation (22), x and f are the generalized state vectors for displacement
and force, respectively, whereas G is the system matrix:

x5 (t)"G(t)x(t)#f (t), (22)
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where
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The solution over one complete mesh cycle t
c
is written in the form of a state transition

matrix (U). For a piecewise periodic system, this matrix may further be decomposed into
U over smaller segments [15], where the functions are continuously di!erentiable and
analytical solutions to the homogenous equation exist. Thus,
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Each of the individual U(t
1
, t

2
) is evaluated from the Wronskian matrix (W), whose

columns are constituted by the eigenvectors of the governing equation in the corresponding
interval:
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Using the periodic property of the state transition matrix, Floquet theory extends this to
states of the system that are apart by more than one full period [16]. Thus, the state
transition matrix over n cycles is given by

U (nt
c
, 0)"U (t

c
, 0)n. (27)

Equation (27) is extremely useful on two accounts. First, it drastically reduces the
computation and secondly, it allows easy computation of the inverse of the matrix, thus
making analytical solutions possible.

4.2. CALCULATION OF U FOR FORMULATION A

When dynamic load variations are not considered in the evaluation of friction, the
problem takes the form of a damped Meissner's equation [15]. Both sti!ness and damping
follow a rectangular waveform. Each subinterval is characterized by constant coe$cients
and hence the results of a classical second order system can be directly applied. Although
there are only two such sub-intervals, this analysis considers three segments, for the sake of
generality when the forcing function is included. For each of the equations (12}14), the
Wronskian matrix is given by equation (28), where j

i
s are the eigenvalues of the second

order equation
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4.3. CALCULATION OF U FOR FORMULATION B

Since equation (17) has constant coe$cients for 0)t(t
a
, the Wronskian and transition

matrices are similar to equation (28). However, in equations (18) and (19), both sti!ness and
damping coe$cients take the sawtooth form, due to the time varying moment arm. Since no
analytical solutions exist for this problem, numerical methods must be applied. However, by
ignoring the damping term and with appropriate substitution of variables, the equations
converge to the form of Stokes equation [15]. Now the corresponding behavior of the
system may be analytically studied. Using the linear relationship from equation (20a, b), the
corresponding homogenous equation may be written as
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In equation (29), u is the transverse pressure angle of the gears. A similar expression can
be found for t't

b
. For a sawtooth coe$cient, one possible solution is given by a pair of

Bessel functions of order 1/3 and !1/3. Thus, the Wronskian can be computed, where
J represents the Bessel function [15]
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With the knowledge of the Wronskian for all individual time intervals, the state transition
matrix for one complete mesh period is calculated:
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5. FORCED RESPONSE OF A GEARED SYSTEM

5.1. SPUR GEAR PAIR EXAMPLE

In order to illustrate some of the concepts presented in this paper, a case study is carried
out using a non-unity ratio spur gear pair. Important parameters for this example are given
in Table 1. It may be noted that the variation in sti!ness is very signi"cant (over $30%),
thus lending itself to a potential stability problem. Table 1 also shows the calculated time
instant values at the three critical points, at an input speed of 1500 rpm. The pro"le contact
ratio C of the gear mesh can be varied by altering the outside diameter of the two gears. This
results in shifting of points t

a
and t

b
, thus changing the periods of parameter variations.

Subsequently, all these parameters are substituted in equations (28}31) to obtain the state
transition matrix for the system and its eigenvalues, for the two cases considered previously.
The critical time instants of a mesh cycle are related to other parameters of Table 1 as
follows, where P

p
is the number of teeth in the pinion:
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TABLE 1

Gear design parameters and critical time instant values for one mesh cycle

Number of teeth P
p
, Pg 25, 31

Center distance 88)9 mm
Pro"le contact ratio C 1)433
Input speed X

p
1500 rpm

Input torque ¹
p

226 N m
k
mean

(N/m) 5)68]108
k
max

(N/m) 7)20]108
k
max

/k
min

1)667
Lowest point of single tooth contact (t

a
) 0)693 ms

Pitch point (t
b
) 1)148 ms

Highest point of single tooth contact (t
c
) 1)600 ms
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5.2. CLOSED-FORM SOLUTION

For a LTV system, the state transition matrix can be applied to compute the response
under a periodic excitation. The tractability of the solution depends both on the excitation
characteristics and the nature of the state transition matrix. In general, the problem is
overcome by expanding the forcing function as well as the time-varying parameters as
Fourier coe$cients. Clearly, this will lead to errors due to truncation of modes and also
increase the computations signi"cantly. However, it should be noted that as the number of
piecewise linear segments within a mesh cycle increases, such as in the case of a more
realistic sti!ness pro"le, analytical solutions could become computationally quite extensive.
In the following sections, the corresponding integrals are found analytically for all possible
excitation time histories for the geared system, comprising of sinusoids, ramps and constant
loads. Unfortunately, this could not be extended to sawtooth coe$cients because the
homogenous solution in the form of Bessel functions is not integrable in a closed form.

A forced response of the system can be found using the Cauchy formulation [17], where
F(t) is an arbitrary forcing function:

x (t)"W(t)W~1(0)x(0)#P
t

0

W(t)W~1(q) f (q) dq, f(t)"G
0

F(t)H . (34, 35)

Ignoring the initial state of the system, the properties of the transition matrix may be used
for deriving the value of the total response of the system. Using U(t, 0)"U(t, q) U(q, 0) for
any q, we obtain

x(t)"U(t, 0) P
t

0

U~1(q, 0) f (q) dq

"U(t, 0) CP
ntc

0

U~1(q, 0) f(q) dq#P
t

ntc

U~1(q, 0) f(q) dqD,U (t, 0) [H
1
(n)#H

2
(t)]. (36)

The solution can be found in two distinct parts, namely for an integral number of mesh
cycles (H

1
) and for the last cycle (H

2
). For n complete cycles, the expression for H

1
(n) is

found as

H
1
(n)"

n
+
i/1
P

itc

(i~1)tc

U~1
i

(q, 0) f (q) dq. (37)
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Now using Floquet theory [14], U~1
i

(q, 0)"[U~1(t
c
, 0)]i~1U~1(q, 0), we get

H
1
(n)"

n
+
i/1

[U~1(t
c
, 0)]i~1 P

tc

0

U~1
i

(q, 0) f (q) dq

"
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[U~1 (t
c
, 0)]i~1

W
1
(0) P

ta
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W~1
1

(q)f (q
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) dq
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1
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1
(t
a
) W

2
(t
a
) P

tb

ta

W~1
2

(q)f (q
0
) dq
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1
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1
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a
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2
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a
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2
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b
)W

3
(t
b
) P
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tb

W~1
3

(q) f(q
0
) dq

,

(38)

where q
0
"q#(i!1)t

c
. A similar approach is applied to the last time cycle, except that the

value of H
2
(t) will not depend upon the positioning of t in the whole mesh cycle and three

possible solutions ensue:

H
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(39a}c)

In equation (39), q
0
"q#nt

c
. If the period of the forcing function is the same as the

parametric variation (t
c
), such as in the case of gear meshing, then the integrals may be

further simpli"ed and all f (q
0
),f (q). For an equation with rectangular coe$cients, the

inverse of the transition matrix in equation (31) is found to be

W~1(t)"
1

j
1
!j

2
C

j
2
e~j

1
t

!j
1
e~j

2
t

!e~j
1
t

e~j
2
t D . (40)

The various excitations are generically represented by equation (41), where i represents
each continuous interval, and R

e
and k

e
are the equivalent base radius and sti!ness

parameters respectively.

Mean torque: f (q)+¹
0
. (41a)



Figure 3. Dynamic transmission error due to individual and combined excitations. (a) All excitations combined;
(b) only friction excitation ¹

f
(t); (c) only pro"le deviation e (t); (d) only parametric variations k(t) and c(t).
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¹ransmission error: f (q)+k
e
R

e
+
i

e
i
cos (iXq#/

i
). (41b)

Friction torque: f
1
(q)+b

1,i
#b

2,i
q. (41c)

5.3. TYPICAL RESULTS

For all of the excitations in equation (41), the integrals H
1
(n) and H

2
(t) are solvable in

their closed form. With substitution in equations (38) and (39), the time-domain response of
the gear system is calculated. Figure 3 shows the relative contribution of parametric sti!ness
and viscous damping variation, friction and pro"le deviations in terms of dynamic
transmission error. A damping ratio of 5% is used and the value of friction coe$cient k

0
is

taken as 0)1, both of which are representative of typical gear meshes under normal
operating conditions. For non-parametric excitation results, the time-varying sti!ness and
viscous damping have been replaced by their time-averaged components, integrated over
one full tooth mesh cycle. The frequency spectra for the same are shown in Figure 4. Note
that since the analytical method does not stipulate any approximations in the process of
solving equations, it precludes any potential errors. A comparison of d(t) predicted by
Floquet theory with results from numerical simulation showed the two to be identical, and



Figure 4. Spectral contents of DTE due to individual and combined excitations, corresponding to Figure 3.
Only orders of the mesh harmonics exist. (a) All excitations combined; (b) only friction excitation ¹

f
(t); (c) only

pro"le deviation e (t); (d) only parametric variations k(t) and c(t).
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hence that comparison is not presented here. Nevertheless, this con"rms the validity of our
closed form solutions.

In all the time plots, the tooth cycle is clearly visible [shown explicitly in Figure 3(a)] as
the fundamental meshing frequency. The smaller oscillations indicate the mean natural
frequency of the torsional system, which is based on the time-averaged mesh sti!ness, and it
is found to be close to the ninth mesh harmonic. The two distinct regions can be seen in
Figure 3(d) corresponding to single- and double-tooth contact. Conversely, there are three
such regions in the friction plot [Figure 3(b)], and the reversal at pitch point can be seen
during each mesh cycle. For both the cases, a strong superharmonic response can be
observed in the frequency spectra [Figure 4(b, d)]. Both time traces and frequency spectra
indicate that parametric variations have a rather dominant e!ect on the system response.
Note that the total response in Figure 4(a) is smaller than that due to parametric variation
alone in Figure 4(d), because the pro"le modi"cations are usually added in order to
overcome some e!ects of the mesh sti!ness variation. Friction force has a somewhat limited
in#uence on torsional dynamics, except at higher harmonics of the meshing frequency. This
situation can change at higher torque values, since friction increases in direct proportion to
the mean applied torque. Thus, Floquet theory has been successfully applied to isolate and
predict the dynamic behavior of the system under mixed excitation conditions. Our method
presents a signi"cant improvement over the solution strategy used by Hochmann [12],
since we eliminate the Fourier series expansions and include parametric variations of
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sti!ness and sliding friction. The bene"ts of an analytical solution for the dynamic
transmission error are even more apparent when aperiodic behavior over large intervals or
instability characteristics are under investigation, as shown in the following sections.

6. STABILITY CONSIDERATIONS IN GEAR MESHES

6.1. FUNDAMENTAL CRITERIA FOR STABILITY

Asymptotic stability of a homogenous system can be determined from the discrete
transition matrix over one complete period of parametric changes. Richards [15] has shown
that a su$cient condition for stability is that all the eigenvalues of the state transition
matrix have an absolute value less than unity, or Dj

i
D(1 ∀i. This principle is applied to

predict instability for both formulations A and B, with the maximum absolute value of
eigenvalues substituted in the above inequality. The discrete transition matrix, and
consequently the stability, will be a!ected by many parameters, including rotational speed
X

p
, contact ratio C, coe$cient of friction k and viscous damping ratio f in the system. Figure

5 shows the mapping of the maxima of Dj
i
D for formulation B (which includes the friction term

in the homogenous equation), as a function of rotational speed X
p
and contact ratio C. In the

absence of viscous damping, regions of asymptotic instability are distinctly identi"able as
diagonally laid zones on the j(C, X

p
) map. As the contact ratio is incremented, the mean

sti!ness k
mean

of the system goes up, and consequently the subharmonic frequencies increase.
The presence of subharmonic resonances can also be seen in the spacing of unstable zones on
the X

p
axis, where for instance the zone containing 1500 rpm and C"1)24 corresponds to the

(2/17)th harmonic of the mean natural frequency, the zone immediately to its left corresponds
to the one-ninth harmonic and so on.

6.2. DYNAMIC RESPONSE AND STABILITY RESULTS

To con"rm the instability predictions in the system, the dynamic response of gears is
found by applying a combined friction and parametric excitation. Figure 6 depicts the time
Figure 5. Stability parameter j as a function of rotation speed X
p

and pro"le contact ratio C, for a viscously
undamped system.



Figure 6. Dynamic transmission error for stable and unstable regions for e (t)"0, k"0)1. (a) Time trace for
stable region, C"1)374, X

p
"1484 rpm; (b) time trace for unstable region, C"1)453, X

p
"1484 rpm; (c) phase

plane plot corresponding to (a); (d) phase plane plot corresponding to (b).

Figure 7. Long term stability of the system corresponding to Figure 6(a).
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Figure 8. Response of the system corresponding to Figure 6(a), when k"0 is chosen.
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trace and the phase plane plots for the dynamic transmission error, when formulation B is
applied, with no viscous damping in the system. It is evident that when parameters
corresponding to an unstable case are used, the solution is unbounded as the elapsed time
increases [Figure 6(b)]. The asymptotic instability is also apparent from the divergence
observed in the phase plane plots [Figure 6(d)]. Similar to Figure 3, the mesh period and the
mean natural frequency can be seen in Figure 6(a). Here, the change in the peak heights is
caused by the frictional torque variation. In Figure 7, the extended time response is plotted,
which shows that the system exhibits long-term stability and a periodic behavior. However,
when the friction is removed, the peak-to-peak value of dynamic transmission error is
reduced from 23 to 15 lm (Figure 8). A comparison with Figure 6(a) shows that in addition
to amplifying the response, friction may also induce a signi"cant modulation phenomenon.

6.3. INFLUENCE OF VISCOUS DAMPING AND SLIDING FRICTION

Next, the in#uence of sliding friction is examined on the stability contours, by comparing
formulations A and B. Figure 9 shows the enlarged view of one particular instability region
in terms of a C}X

p
map, when no viscous damping is considered. Inclusion of friction has

the e!ect of shifting this region a little towards the higher speed side. However, the overall
in#uence is negligible, as con"rmed by Figure 10, where the stability lines show a very weak
dependence on k. When the sliding friction is considered in the homogenous equation, it has
primarily a mass-loading e!ect, and the exact shape of frictional torque variation does not
appear to signi"cantly a!ect the stability characteristics. This observation is valid only
when the sliding friction is modelled using the LTV model. When sliding non-linearities are
incorporated, friction could play a much larger role in stabilizing the system, since it is
possible to obtain an equivalent damping coe$cient for friction, by equating the energy loss
due to two mechanisms.



Figure 9. E!ect of Coulomb friction on instability zone. Key:**, with friction; - - -, without friction. Here the
area enclosed within the curves is the unstable zone.

Figure 10. Stability contours for k and X
p

(rpm) when computed with formulation B. Here, shaded portions
imply unstable zones.
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Finally, the viscous damping term is included in the governing equations (Figure 11) and
plotted against the pro"le contact ratio. It is apparent from the graph that for normal
operating conditions of the gears, a viscous damping ratio value f'0)01 will always yield
a stable solution. This is demonstrated by modifying the originally unstable system
[Figure 6(b)], by adding a damping ratio value f of 0)01. Figure 12 shows that even though
a large amplitude results, the response is asymptotically stable.

From this analysis, it can be deduced that under normal running conditions, the gear
pairs pass through potential instability zones, which may result in a large dynamic factor



Figure 11. Stability boundary for contact ratio C and damping ratio f at X
p
"1500 rpm, when computed with

formulation A.
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and vibro-acoustic response. These zones are sensitive to various design parameters, the
most notable of which is the contact ratio of the gear mesh. On the other hand, although
sliding friction as an LTV parameter alters the nature of the equations and solution
methodology, it has only a marginal e!ect on the overall dynamic stability of the system.
Besides, most practical gears will have su$cient viscous damping to prevent the occurrence
of instabilities. Furthermore, backlash [9] as well as sliding non-linearities [14] could in
fact result in stabilizing the system, especially at higher superharmonics. Nevertheless,
sliding friction a!ects the spectral modulation characteristics and the forced response at
higher torque loads.

7. CONCLUSION

In this paper, a new model and closed form solutions are developed that are expected to
enhance our analyzing capability and the understanding of gear vibration and noise
sources. A spur gear pair operating under Coulomb friction has been modelled as a linear
time-varying system and it is shown that the manner in which friction is incorporated
dictates the form of the governing di!erential equations. Our work overcomes the
limitations of all known prior research work [3, 4, 10] that assumed friction to be a pure
external excitation. Conversely, in this study, k is shown to also a!ect the homogenous part
of the equation, and thus it is treated as a system parameter. New analytical formulations
are derived and veri"ed for the two modelling scenarios in terms of exponential and Bessel
functions, respectively, with the application of Floquet theory. De"ciencies of previous
methods [12] are overcome by including periodic mesh sti!ness and damping, and their
dynamic interactions with sliding friction characteristics are studied. It is shown that pro"le
deviations, friction and sti!ness #uctuations, all generate a dynamic transmission error of
a similar magnitude, with di!erent spectral contents. Although it is the smallest contributor
to peak transmission error, friction can yet have a large modulation e!ect on the response.
Finally, classical stability theorems are applied by including sliding resistance, and it is



Figure 12. System response after inclusion of viscous damping with f"0)01: (a) time response; (b) phase plane
plot.
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observed that friction had only a minimal e!ect on the torsional instabilities of the gear
dynamic system.

It is conceivable that a higher degree of freedom system, which includes #exural
vibrations in the friction force direction (g), may show a much larger in#uence of sliding
friction on the overall system behavior. Furthermore, when friction polarity is considered to
be a function of the instantanous surface velocity, rather than a quasi-static time-varying
function, the sliding force modes may play a crucial role in the stability characteristics of the
system. This will, of course, lead to non-linear model, which cannot be analyzed by the
formulation of this article. Further research is under way to investigate this phenomenon.
Similarly, one may include clearance non-linearities [9] and alternate cyclic variations of
sti!ness and examine the subsequent interactions.
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APPENDIX A: NOMENCLATURE

c viscous damping coe$cient
F force
f generalized force vector
G system matrix
J moment of inertia
k mesh sti!ness
m mass for a translational system
N normal load function
n integral number of mesh cycles
R base circle radius
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¹ torque
t time instant
W Wronskian matrix
x generalized displacement vector
a gear roll angle
b, c generalized parameters
d dynamic transmission error
e unloaded static transmission error
U state transition matrix
u pressure angle of the gears
C pro"le contact ratio of gears
g axis along o!-line of action
j eigenvalue of state transition matrix
k
0

coe$cient of friction of the gear material
k
i

instantaneous coe$cient of friction for ith tooth
P number of teeth on gear or pinion
h angle of rotation of gear or pinion
q cyclic time variable
X mean angular speed
m axis along the line of contact
f viscous damping ratio

Subscripts

1, 2 number of tooth in contact
a, b, c time zone in gear mesh cycle
e equivalent system
f sliding friction
m one mesh cycle
p, g pinion and gear respectively
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